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WINGS IN SUPERSONIC FLOW AND APPLTED TO A
SPECIFIC FLUTTER PROBLEM

By Herbert C. Nelson, Ruby A. Rainey, and Charles E. Watkins
SUMMARY

Linearized theory for compressible unsteady flow is used to derive
the veloclty potential and 1ift and moment coefficients in the form of
power series in terms of the fregquency of oscillation for a harmonically
oscillating rectangular wing moving at a constant supersonic speed.
Closed expressions for the velocity potential and lift and moment coef-
ficients associated with pitching and translation are given to the sev-
enth power of the frequency. These expressions extend the range of use-
fulness of NACA Report 1028 in which similsr expressions were derived
to the third power of the frequency of oscillation. For example, at a
Mach number of 10/9 the expansion of the potential to the third power
is an accurate representation of the potential for values of the reduced
frequency only up to about 0.08; whereas the expansion of the potential
to the seventh power is an accurate representation for values of the
reduced frequency up to about 0.2, a value of this parameter large enough
to cover most rectangular-wing flutter cases likely to occur at this Mach
number.

The section and total 1ift and moment coefficients are discussed
with the aid of several figures. 1In addition, flutter speeds obtained
in the Mach number range from 10/9 to 10/6 for a rectangular wing of
aspect ratio 4.53 by using section coefficients derived on the basis of
three~dimensional flow are compared with flutter speeds for this wing
obtained by using coefficients derived on the basis of two-dimensional
flow.

INTRODUCTION

A method for obtaining the air forces and moments acting on harmon-
ically oscillating rectangular wings in supersonic flow is given in ref-
erence 1. This method is based on the expansion of the wvelocity potential
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in powers of the frequency of oscillation and is applied to harmonically
translating and pitching rectangular wings to obtain expressions for the
associated forces and moments involving the frequency to the third power.

In the expansion of the velocity potential, the frequency of oscil-
lation and Mach number enter the results in a combined form such that
the range of fregquency for which the expansion to a given power repre-
sents an acceptable approximation to the actual potential decreases as
the Mach number decreases toward unity. As a result, the force and
moment expressions of reference 1 apply to a sufficiently broad freguency
range for most flutter studies only if the stream Mach number is greater
than about 1.5. In order to obtain results that cover a larger part of
the transonic range, that is, results that apply over a wider frequency
range at Mach numbers nearer unity, the present paper extends to the sev-
enth power of the frequency the expressions of reference 1 for velocity
potential, section force and moment coefficients, and total force and
moment coefficients. This extension resulis in a coverage of frequency
that is generally sufficient at Mach numbers as low as about 1l.l. It
also, of course, increases the frequency range covered by the approxi-
mate theory at all supersonic Mach numbers.

Although the method of reference 1 furnishes a straightforward
approach for msking this extension, the present paper employs a more
concise method based on the velocity potential for a semi-infinite wing,
developed in reference 2. In this reference Stewartson makes use of the
Laplace transformation to obtain the potential in the form of a definite
integral. The integrand of this integral expanded in powers of the fre~
quency and integrated term by term can be made to yleld results that are
ldentical in form with those obtained by the method of reference 1. For
the sake of completeness Stewartson's derivation of the velocity poten-
tial for the semi-infinite wing is reconsidered herein.

For illustration the extended section coefficients are used to cal-
culate flutter characteristics for a rectangular wing of aspect ratio 4.53
at several Mach numbers in the low supersonic speed range. These results

are compared with calculations made by using two-dimensional aerodynamic
coefficients, obtalned from reference 3.

SYMEOLS

A aspect ratio
b one-half chord

c speed of sound in undisturbed medium
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section 1ift coefficient

total 1ift coefficient

section pitching-moment coefficient about axis of rota-
tion x4

total pitching-moment coefficient about axis of rota-
tion xq

functions defined after equation (17)

vertical displacement of axis of rotation x,, positive
dovnward

amplitude of vertical displacement

time derivatives of h and «, respectively

Bessel function of zero order (first kind)

reduced frequency, ab/V

components of section force and moment coefficients,
respectively, defined in equations (29) to (32);
i=1,2, 3, and k4

components of total force and moment coefficients,
respectively, defined in equations (37) and (38);
i=121,2, 3, and 4

Mach number, V/c

aerodynemic section moment on wing about axis of rota-
tion x5, positive leading edge up

total aerodynamic moment on wing about axis of rota-
tion =xg, positive leading edge up

local pressure difference

aerodynamic section normal force, positive downward
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total aerodynemic force on wing, positive downward

nondimensional radius of gyration of wing section about
2
elastic axis, VI@/%b vhere I, is mass moment of

inertia per unit span about elastic axis anmd m is
mass of wing per unit span

one-half span of wing
time
velocity

vertical velocity at surface of wing along chordwise
section y' = yy'

location of center of gravity of wing measured from
elastic axis (see ref. 3)

ebscissa of exis of rotation of wing (elastic axis)
nondimensional rectangular coordinates attached to wing

moving in negative x-direction, referred to wing
chord 2b

first bending mode shape of wing
vertical displacement of any chordwise section of wing
first torsion mode shape of wing

angle of attack, positive leading edge up

eff7ctive angle of sttack due to vertical translation,
h/v

amplitude of angle of attack o
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¢ =2y/a

on phase angle between section 1ift due to h and
velocity h

4, phase angle between section 1lift due to « and
position «

Om phase angle ?etween section moment due to h and
velocity h

eam phase angle between section moment due to o and
position «

GA phase angle between total 1ift due to « and
position « .

eAM phase angle between total moment due to o and
position «

K density parameter, ﬂpb%én

density in undisturbed medium

¢ disturbance~velocity potential

w frequency of oscillation

Wy first bending frequency of wing

Uy, first torsion frequency of wing

® = oxi2/p2

ANATLYSTS
Velocity Potentials for Harmonically Oscillating

Rectangular Wings

As a first step in the analysis, an integral expression is developed
for the velocity potential for a harmonically oscillating semi-infinite
rectangular wing (fig. 1). As umentioned in the introduction this expres-
silon is given in reference 2 and is redeveloped herein for the sake of
completeness. From the expression for the semi-infinite wing, the poten-
tials for the various regions (see fig. 2(a)) of a finite rectangular



6 NACA TN 3076

wing are obtained either directly or by appropriate modifications. The
analysis for the finite wing, like that of reference 1, is restricted
4o the condition that the Mach line from the foremost point of one wing
tip does not intersect the opposite tip shead of the trailling edge.

Velocity potential for semi-infinite rectangular wing.- Consider a
thin, flat, semi-infinite, rectangular wing moving at a constant super-
sonic speed in a chordwise direction normal to its leading edge as shown
in figure 1. The differential equation satisfied by the disturbance-
velocity potential for the wing (when referred to a rectangular coordi-
nate system x',y',z' moving uniformly in the negative x'-direction
with the x'y'-plane coincident with the meen position of the wing) is

_J;_(i+v_a_x>2¢=a2¢ +82¢ +82¢ (l)
02 Bt Bx axtz ayrz azxa

vwhere x' = 2bx, y' = 2by, z' = 2bz, 2b is the wing chord, and c

is the speed of sound in the undisturbed medium. The boundary condition
of tangential flow at the surface of the wing, in accordance with small-
disturbance linearized theory, can be expressed as

3 o)
2 /g'—>to

where Z, is the vertical displacement of the ordinetes of the surface

of any chordwlse section of the wing such as y' = yn' in figure 2.
The wing is assumed to be executing simple harmonic motion with respect
to time +, so that t enters only in the exponential exp(iwt), where
® 1is the frequency of oscillation. Equation (1) thus becomes

Py Ny ey, a2, (3)
ay'? 3w? B ¢ & B

where the disturbance-velocity potential ¢ is related to ¥ by

¢(x':yl:zl:t) = W(XI:Y',Z')em
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For the case of the semi-infinite wing having identical motion in every

chordwise section the boundary conditions that equation (3) must satisfy
are:

(ﬂ) - w(x) (x'yy' 20) ()
oz' z'=+0
ianp+vg—‘l’;=0 (y' <0) (5)
¥v=0 (x' <0) (6)
¥v—>0 (z'—> 1w) (7)

Equation (4) is derived from equation (2) and implies that the normal-
veloclty distribution on the wing is given; equation (5) is the condi-
tion that the pressure be zero off the tip of the wing; equation (6) is
the condition that no disturbances be propagated forward of the wing;
and equation (7) is a condition on the behavior at infinity (the manner
of approaching zero is associated with the radiation condition of

Sommerfeld). Equations (3) to (7) constitute the boundary-value problem
for the velocity potential ¢.

Applying the Laplace transform
— ® 1
W(B,y',z') = f e~BX W(x‘)yl)zl)dx'
0

to equations (3) to (7) yields the transformed boundary-velue problem
in the form

¥ oo, 4 2aM  dP\- _
W‘Fg—z—: B=s +i-—c—S-'c—2llI=lJ.2¢'- (8)

<§-i7—> - w(s) (v' 2 0) (9)
2 Z'=i0 .
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¥=0 (y' < 0) (10)

Y—>0 (24— w) (11)

The problem in this form is, as pointed out in reference 2, similar to
the problem treated in article 308 of reference 4. By applying the
method of reference 4 to the present problem, it can be shown that the

value for V¢ at the upper surface of the wing (z' = +0) is given by

¥ =-~-w(s) %—- -vi—_pfv; e""wzdv (12)

For convenience equation (12) may be rewritten (see, for example, p. 478
of ref. 5) as

— /2 .
¥ = -w(s)(% - iﬁﬂ o~y 'sec? dn) (13)

If use is made of a table of Laplace transforms (for example , pairs 55
and 89 of ref. 6) and the Faltung or convolution theorem, the inverse
of the Laplace transform in equation (13) may be written as

t

W(x',y' y40) = - %f w(x' - £)6(E,yas (1)
0
where
- %2 %!
G(x',y") = Jo(& x')G cp (x' < By'")

- 1 oM '
2 sec |[F=— ® \ -i = X
RL/; By JO(T l/x'a - B%"zsecl"n)dn e CB

(x' > y')
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and E' = 2bt. From equation (lh) the velocity potential in terms of
the nondimensional coordinates x, &, and y becomes

x
#(2ox, 2y, t) = - 2ot fo w[Bb(x - £)] 6(2be ,20y)a (15)
where
G(2bx,2by) = Jo(l‘g-x>e"'i"”jx (x < By)

G(2bx,2by) = |J, (— ) - —f oo VIE; Jo( 52Y2530hﬂ>d‘1 emiax

(x > By)

oM
Vg2

o =

BEquation (15) is the desired integral expression for the velocity poten-
tial for a semi-infinite wing. Note that for x £ By equation (15)
reduces to the potential for a two-dimensional wing (see ref. 3).

An expansion of the integrand of equation (15) in powers of the
frequency of oscillation is employed because the indicated integration
does not appear to be obtainable in terms of known functions. The result
of this expansion is

- TfB f w[2b(x - g)] i@) % (le)er Ir(6,y)ae

r=0(q ~ 2r) . [ ]2
(16)
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where l:q/2:| denotes the integral part of q_/2 and

I.(x,y) = % (x < By)

-l X
sec — r
In(x,y) = ’5‘ -fo V By (l - ﬁ-%eﬁ Secl‘n> dn (x > By)
X

Tt may be shown by induction that I, for x > By cen be expressed in
terms of the fumnctions ¥Fp of reference 1 as follows:

r-1 ;
Ir = % ; (-1)™ - I(.r-—ml-)--l): x2(r-m_1)F2( 1) (x,¥) (17)

where

Fp(x,y) = fo } xn"lsin"l\@i ax

Two relations involving F, that are of particular importance in the
next section are

X
_ 1 1o
/:) Py (x,y)dx = — l(xm+ Fn Fm-l-n+l) (18)
and
n
Fn(x,y) = % sin’l\/%{i + E;_—l %n'm(ﬁy)m‘ﬂ\/w(x - By) (19)
m=
where
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=2m-l(n'l)(n-2) e o o (n=-m+1)

(m > 1)
(n-1)(2n-3) . .. (2n-2m+ 1)

&

Equations (16) to (19) provide the means for obtaining the potential to
any desired power of the frequency of oscillation. They are used in the
next section to develop expressions to the seventh power of the frequency
for the velocity potentials for the various regions of a finite rectan-
gular wing undergoing torsional and vertical translational oscillations.
These expressions are extensions of similer expressions developed in ref-
erence 1 to the third power of the frequency.

Velocity potentials for finite rectangular wing.- The coordinate
system and regions of imterest for the finite rectanguler wing are shown
in figure 2. On the portion of the wing between the Mach cones emanating
from the foremost point of each tip (region N in fig. 2(a)) no inter-
action tekes place between the flow on the upper and lower surfaces of
the wing. On the portions of the wing within the tip Mach cones
(regions Ty, Tp, and T3 in fig. 2(a)) interaction does teke place between
the flow on the upper &nd lower surfaces. The velocity potential at a
point in one of these regions is designated by ¢N,

¢Tl’ ¢T2’ or ¢T3
sccording to the region that contains the point.

For the particular case of the wing independently performing small
sinusoldal torsional oscillations of amplitude 0o &bout some spanwise

axis x, &nd small sinusoidal vertical translations of amplitude h,,
the equation for Z, is (see fig. 2(b))

7, = elwt Eb%(x - xg) + h;| = 2ba(x - %) + h (20)

Substituting this expression for Z; into equation (2) gives

w(2bx,t) = Va + 2b&(x - x;) + h (21)

Equation (21) complies with the restriction inherent in the development
of equation (15), namely, that the wing have identical motion in every
chordwise section.

The velocity potential for region T; for the wing motion represented

by equation (20) is obtained directly from equation (16). Putting the
expression for w(2bx,t) gilven by equation (21) into equation (16),
retaining only terms in the expansion up to the seventh power of w,
inserting the appropriate values of I,. obtained from equation (17),
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end performing the necessary integrations with the aid of equation (18)
Yields the following form for the velocity potential in region Tj:

by = -% (B + Vo)A (x,5) + Eb&E\a(x,y) - xo7\1<x,y§]} (22)
where

2 —
M (x,y) = %Fl - 13F, - ;-?(xﬁ'e + 32F3) + %E@Fe + (22 - l)FLJ +

h =
[ im Iy
ﬁlx3(452 + 5)F2 - 3xF), + 2;341«"5, - 5 415 (4:32 + 7)F2 -

30x°F), + (854 - hp2 4 3)5@ - : ?:M5 Ex5 (854 + 2892 4 21)F2 _
T

~f
10:5(682 + T)F, + 15xF, + 836F] 4 10 Ex6 8t +
( ) 4 6 T eosuomb (

3662 + 33)F, - 105x%(2p? + 3)Fy, + 105x3F +

(16;36 - 8% 4+ 6p2 - 5)F§’}
X
Mo(x,y) =/; M (x,y)ax

The integrations required to obtain the function Ao may be readily
performed with the aid of equation (18). The Integrated values of Fn
(from eq. (19)) needed in equation (22) are listed in appendix A.

Use 1s now made of the potential ¢Tl’ equation (22), to obtain the

potentials for regions N, Tp, and Tz. The potential @y 1s obtained
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from ¢Tl by substituting y = x/ B in the fumetions Ny end ?\2 in
equation (22), in which case F, becomes

xa

Fn= ';

SE

and the velocity potentisal ¢N is given by

¢N = -%;9- (B + Va)£p(x) + Eb&.E2(x) - xofl(xj)_l (23)

where

£1(x) = x - 1B x; - @2@(2'32 + 3)"—‘32 ﬁ (262 + 5)"%L 1924(83” +

‘ > i 6 6 6 4
yop2 + 35) % - 8% + 5682 + 63)E% - 168° + 1688* +
P )5 960MllL< g P )6 1_1520M6(

(16;36 + 21631* ¥ 59&;32 + l+29)£§

T
2 x
5785 + 251) -,—_(— + )

il
8o6L40oME
f2(x) = j; fl(x)d_x

Note that because of the two-dimensional character of the problem in
region N +the spanwise vearigble y 1is not contained in ¢N Equa-

tion (23) can also be obtained by expanding to the seventh power of
the velocity potential for the two-dimensional wing given in reference 3.
The potential ¢T2 is obtained from ¢Tl by replacing y In the func-

tions A; and A, in equation (22) by A - y, where A = 2s/2b 1is the
aspect ratio. The potential in region 'j.‘3 (this region exists if

1< AB < 2) is a simple superpcsition of the potentials for regioms N,
T1, and Tp, as indicated in reference 1, and may be written as

¢T3=¢Tl+¢’1‘2‘¢N (2Y4)
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Forces and Moments

Section forces and moments.- The expanded velocity potentials for
the finite wing are now used to obtain expressions for the section forces
and moments at any spanwise station of the wing. Since the distribution
over the entire wing is symmetrical with respect to the midspan section,
only expressions for the forces and moments at any station of the one-
half span adjacent to the origin (see fig. 2) need be considered.

The local pressure difference between the upper and lower surfaces
of the wing may be written as

’p = -2p<-;% g’% + ia¢> (25)

The section force, positive downward, is therefore

1
P=-2bf p dx (26)
0

and the section moment, positive leading edge up, about the arbitrary
axis of rotation x = x5 is

1
M, = -hsz/; (x - xo)Ap dx (e7)

Under the previously mentioned restriction that the Mach line from
one tip not intersect the opposite tip ahead of the trailing edge, equa-
tions (26) and (27) must be evaluated for the two cases that can arise
(see fig. 3). These cases are: (1) The Mach lines from the tips do
not intersect on the wing (AR > 2) and (2) the Mach lines intersect on
the wing but the Mach line from one tip does not intersect the opposite
tip ahead of the trailing edge (1 € AB € 2). Only the final forms of
the section forces and moments are given. These forms are calculated by
deriving the pressure difference for the different regions from the
appropriate velocity potentials, making use of figure 3 to determine the
limits of integration for the regions involved, and using the relation
given in equation (18) to perform the integrations involving the fumc-
tions Fp; the results can be written as
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= -hprzkeeimEl;-;i <Ll + il.2> + cro<L5 + ﬂgl

My, = -bpbPy2kPelnt %(Ml + 1M2> + %(M5 + iMLL):l
J

The quantities L; (1 =1, 2, 3, and 4) and M; (i=1, 2, 3, and L)

are the components of the section force and section moment coefficients,
respectively. The reduced frequemcy k is related to w and @ by
the relations

s (28)

_bw_ B2 T
vV om2

In order to obtain self-consistent expressions for the forces and moments,
the terms of the wvelocity potentials associated with h and o are
expanded to the seventh power of @ and the terms associated with o

are expanded to the sixth power. As a result, the coefficients in equa-
tions (28) are as follows:

Case 1(see fig. 3(a)): TFor any section between the tip and the
point where the Mach line intersects the trailing edge, or where
0<y<1/g,

Ly = — [sai‘l + (232 + 1>F:l - —EFQ - 631'?3 + (8;3lL + g2 - 1)

L= |

R
)h

1 2 = 6
5o 5(6;3 + 7)F2 u 40,36? + 3(163 + 851‘ - 2;3 + 1) :l(

=lel

1
20160

E(l&al‘ + 18p° + 33)?2 - 35 (8;32 + 9) F, + 105F, - 11285F, +

1/_\6
(128[38 + 6hpb - 16p% + 82 - 5) i“gl <-h‘%) (29a)
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- {21?1 + Kzsa - 1)?2 - 3pF5 (ﬁ?-)z + élﬂl%;? - (8;31L - 4p2 4 3)?1 +
10p4F Y . _L | 262 + 3)F, - TOF), - 3 166° -
2 \m

2880

gal + 682 - 5)?6 + 565%,]@)6 } (29b)

= = = = 2
ﬂm:2k2 {2 (Ba + 1)F1 - E’*Fl - (6;3lL + 3p2 - 1>F2 + p2 (632 + 5)F5:k%) +
i&se + 5T, + 1265, - (nog® + 208 - 582 + 3)F), +

2p%(1562 + lB)%(%u - f@E(eB” + 218% + 21)F, -

20(p2 + 7)F, + 1208% - 5(11288 + 5680 - 14p* +

782 - 5)?'6 + 856(2832 + 25)?‘7](%6 } - 2x,1q (29¢)

F F 7 = "
:rsl3k {4 EB'-’—’F":L - (382 + l)F;I +%E(gﬁh -2+ 1)F, - gl + (208 +

78? - 1)@ (8- iE(B?- + T)Fp + 10(86° - ugk + 387 - 3)F, -

= = 4
240;36F5 + (16836 + 6ugh - 1182 4 3)F;’ (ﬁi) + 2016013(2;3” + 2782 +

35)F, - 55(82 + 9)F, + 21(1688 - 886 + 6p* - 562 + 5)Fg - 8968%F, +

(57688 + 23286 - nuph + 1582 - 5)@(%)6 } - 2x0Lp (294)
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My = < {ll- EBZ?‘J_ + (332 + 2);3:1 - %l:g;z - 3[31*;‘3 + 32(532 + ).|.) ;5]<?1_)2 +

xpo
~ K6B2 + 1) Fp - oF, - 566F5 + p* (762 + 6)%({;1)1L -
-5—03:15,%(16[31‘ + 4882 4+ 33) ?2 - 14 (8[32 + 9)?‘4 + 35?‘6 -

2885, + 465(982 + §)F Q( )6} 2xoL (302)

Mp = o {qu - [— (282 - D)F, + (up2 + 1)F;| (%2 LIisF, - 2(ss" -
42 + 3)F)+ + 211-[3)+ + 8p2 F6] l E5 (252 + 3)§2 _ 1051?')4_ _

3(16!36 - BBJ‘L + 682 - 5)f‘6 + (6hﬁ6 + zlualL - 42 4 l) ?El(%f} - 2xgL2

(30D)

Mz = ﬂBM;-ke {4(32 + 1)?2 - %E‘Bhf'l - 3(651L + 362 - 1)?2 + (20,34 +

2182 + 3)%1[(%)2 + i%E(Ba +5)Fp + 5286%5 - 2(kopb + 20! -

2 7 6 b 2 _ IS
5p= + 3>Fl++ (5613 + 64p* + 118 6] 2880 23 +

2182 + 21) - 15( + 7)?‘1L + 16058.=E‘5 - 3(1_12;38 + 5685 -

(Equation continued on next page)
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= =1/ =\6
wgh + 762 - 5)_1-“6 + (192;38 + 23256 + gt - 5p2 4 J_)F%(ﬁ-) -

2xo(My + L3 + 2xo1Ln) (30c)

My = —2 -8[-52?'1 + (282 + l)?ﬂ + &BEB” - 8% + YFp - 6p'F5 +
1Bk 5

= 2 — =
82(582 + 3)F5| (L) - X [3(g2 + 7)E, + 5(86° - 1% + 362 - 3)F, -
M/ 90

90;36§5 + opt(28p2 + 19)?‘5! (%)4 + %LME (8" + 2782 + 33)F -

11(p2 + 9)Fy, + 7(1688 - 8% + 68" - 5p2 + 5)Fg - 22up%F, +

886 (1582 + 1_1)1""_9] (ﬁ-) - 2x(Mp + Ly + 2xolo) (304)

where f‘n (n=1,2, . ..9), glven in appendix A, is F, evaluated

at x = 1. For any sectlon between the point where the Mach line inter-
sects the trailing edge and the midspan, or where 1/B <y g A/2,

Ly o Ll R 5(g)2 , 8% + 2802 4 21@)1‘ )
33 2 M 960 \M

64pd + hz2pt + 79282 + 429@_ﬂ (31s)

322560 \M

=
V]
1

—\2 —\ =\6
_ 1 ) 42 + 7B 8ﬁ3lL + 3682 + 33/(1))
e ﬁﬁ‘) * -E:@TZ(E) i 11520 W (320)
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_ 2,7 . B2 z( by 3532 + 35/m)
E 5M2k2l: i} ) \M

8gb N 2
88° + 1hog™ + 3578 +23l(a)
80640 :] Frol1

_ B2 + Q(Q bgt 4 hop2 4 63/m)
by = [ T M) 2880 \M

8;3 + 180g% + 56162 + h29/— :l 2x Lo

322560

My = L% Eﬁg_i_é._) 8" + 2882 + 21/&)
1 3 15 560

6485 + h3opt + 79262 4 l+29{a> )
1814ko

mp = L1 -3 5(432 + 7w\ " _ 7(8% + 362 + 33)
2a- ) M, 46080

My = — EQJ,l_EBu(S;) 46”+3552+35/“)

AM2K2 576 \M

N
46080

836 + 1408

+ 5576 +231/°°] 2xo(M1 + L + 2x0L1)
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(31c)

(314)

(32a)

(32b)

(32¢)
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w oo 1 (Me?-1) g2+ 5/m\° _ hpt + 4op? + 63{_@_)lP N
L 83K 3 15 \M 1680

6 I 2 N
88° + 1808~ + 5618< + h29/a>> - Mo 4+ Iy + 2x 324
181440 \M 2xo( 2 h OLQ) (522)

Case 2 (see Tig. 3(b)): For any section between the tip y' =0
and the point where the Mach line from the tip at y' = 2s intersects
1

the trailing edge (or where 0< y< A - E) the components of the sec-
tion force and moment coefficients are given by equations (29) and (30),
respectively. For any section between the point where the Mach line
from the tip at y' = 28 intersects the trailing edge and the midspan

(or where A - % <y < A/E) the components of the section force and

moment coefficients, respectively, are obtained by first adding to equa-
tions (29) and (30) the results of substituting A -y for y in these
equations and then substracting equations (31) and (32) from the result.
For example, the term of L, that does not contain & 1s given by

L, = LB -432E?"1(y) + Fy(A - yjl + 4(2p2 + 1) ﬁ"a(y) + Fo(a - y}l - -533-

(33)

Total forces and moments.-~ Expressions for the total forces and
moments can be derived by considering only case 1 of the previous sec-
tion. It can be shown that case 2, although more cumbersome to handle,
leads to the same expressions. Therefore the total force, positive
downward, may be written as

B 1/ Af2
j ub/; (B)p, dy + ltbf (P)y av (34)

and the total moment, positive leading edge up, about the axis x = X5
as

A/2
dy + l+b_/‘ (MQ)N dy (35)

_ 1/8
m=%L (%) 1/8

Ty
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In equations (34) and (35) the quantities (P)Tl and (M“)Tl are the

section force and moment, respectively, whose components are given in
equations (29) and (30), and (P)y end (Mg )y are the section force

and moment, respectively, whose components are given in equations (31)
and (32).

Upon performing the integrations indicated in equations (34) and
(35) with the aid of the relation

/e - 2(n + 2)
h/; Fn dy = nzz : 1) é%
the results can be written as
,1
P = -8f3b2V2k2Aem Eh%’-(fl + ifg) + a.0<f.5 + ﬁhil
F (36)
M, = -8pb3v2k2Aeith%l@§L-+:ﬁ@g + GOGEB + iﬁgﬂ
where ]

A l_u2+5§2+8g”+2832+21/_§)“_
Y3 2k \M oo\

6ugd + 3ol 4 79282 4+ h@/_(_u‘_f _a Ee + 2 B 4+ 882 4 8/@)2 +

322560 \M/  =ap 20 \M

g6 + 1884 + u8p2 4+ 32/_lL _ 38 + 3286 4+ 16084 + 25682 + 128@)6:\
8140 M 601480 \M

(37a)
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f=i.1-;(§)2+&&1(g)”_ +3652+53/—> ]
27 pk I\M 192 M 11520 \M 2AB

B2 + hg_)z + Bl* + 12p2 + :L6/93_)lL _ 36 + 2&5’* + 80p2 + 6l (@) ]
12 (M 360 \M 20160 \W/

(37p)
E3=EM— +1 - L_i@ hsl*+3ss2+35@ 3

880 + 1hopt + 35782 + 231@_)6 _ L, o3P u@z
80640 \M 2AB

5l + 2082 + 16@) 786 + 56p% + 11282 + 6T T
360 \M 20160 \M> - (570)
C

T - L lg2_ 1 B2r5m? lLB”+1+962+65/
BT ol

8;£+ 18034 + 56182 + lr29/§>6 + X E g2 + 2/a>> +

322560 5AB >

zph 4+ 1682 + 16@ g6 + 104 + 2up2 + 16/0.) 3
50 \M 7580 - 2xolp  (374)
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M. = L E-&ﬁ_&_i(@>2+8sh+2&s2+21@)h_
L B3| 3 15 M 560

6ug® + 328" + 79282 + 429 @)6 - Ll ig242-
181440 2AB

g + 882 4+ 8/@2+ﬁ6+18ﬁ+48]32+32/@4_
18 720 \M

8 6 L 2 \6
2 1608" + 2568 + 128 —
B” + 3287 + 1608 + 2568 /9):\ - oy

8a
0500 at (38a)
My = 241 - éé)a + i&ﬂﬁﬁ(@)h - 7(8p" + 3682 + 33)@6 -
Bk 8 576 M 46080
1 2_ﬁ2+h@2+5h+@2+16/0_}>u_
348 5 140 1
6 b 2 -\ 6
g° + 24g™ + 80 + 64(_@) - =
560 7 2xolp (380)
ool 2r3m2, bty 3502 y 350a\"
NN 8 WM 576 M
6 L 2 -~ 6 ) 2
8p° + 1kOB™ + 3578% + 23l/c_o> - _L\é(52+ 1) _ 3BS + 4@ +
46080 3AB 5

5)3lL + 208° + 16(® b - 7B6 + 56;3lL + 1128° + 64/@)6:}
140 \M 7560

2xo(y + T + 2xoT) (38¢)
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o1 Ju(g? -1), g2+ 5(@)° _ hs”+532+63/é4+
"7 o 3 15 M 1680

6
88° + 180" + 56182 + k29(m +__1__3_§2+2@2+
181440 \ 348 3

zglt 4 16p2 4 16 (® b _ 86 + 10t + 24p2 4+ 16/ 6 )
240 (M 1200 \

2xo(Mp + Ty + 2x5Tp) (38a)
SOME PROPERTTIES OF FORCES AND MOMENTS

_Examination of some of the properties of the extended section and
total forces and moments of the present paper may be of interest. For
this purpose consider, first, the conventional coefficients for section
1ife ¢, and sectlon pitching moment cp that may be obtained from

equations (28) as

cy = - p—bl;E = hEik(Ll + ilp) oy, + kE(L3 + iLh)chI
> (39)
cp = 2_:1’)%% = -2 Eik(Ml + iMp)oy, + K55 + mh)ﬂ ]

vhere oy = h/V is the angle of attack due to vertical translation.
From equations (39) the section 1ift- and moment-curve slopes (complex
derivatives) associated with vertical translation and pitching are,
respectively,

den

de
Eai— = -ill-k(Ll + 1Lp) S = 12k(My + ng) (408)
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end

decy

d
= = ll—kz(L3 + iLlF) ‘w

The coefficients c; and ¢, and their associated slopes reduce to

well-known results in the steady case (k = 0). For example, substitu-
tion of the components given in equations (31) into equetions (39) yields
the result c; = La/p  (Ackeret's result) for a nonoscillating two-

dimensional wing. Equations (39) and (40) have the additional feature
that multiplying the components L4 and M; (1 = 1 and 2) associated

with vertical translation by k and the components Li and My

(1 = 3 and %) associated with pitching by k° makes these quantities

more wmiform in megnitude and therefore more suitable for plotting.
Now consider the coefficients for total 1lift C; and total moment

Cp, that may be obtained from equations (36) as

Cp = ~ —b—= hl:-ik(il+ ﬁ:z)ah+k2(f3+ ﬁu)ﬁ

2pboVoA

~

S (k1)

Cp = ;;igiaz = -2[Eikﬁﬁl + iﬁé)ah + k26E3 + iﬂh)%] |

From equations (41) the total 1ift- and moment-curve slopes (complex
derivatives) associated with vertical translation and pitching are,
respectively,

ok - -aha(Ty + 15,) - rk(l e ) (k2e)
and
L - 0T + 13, B = ai2(fE; + i) (kD)

Equations (40) may be used to illustrate the extent to which the
approximate expressions of the present paper for the section force and
moment on a finite rectangular wing may be useful. A comparison, based




26 ' NACA TN 3076

on these equations, is made in figure 4 of some exact and epproximate
calculstions for a two-dimensional wing vertically translating and
pitching about its midchord position. Results for a two-dimensional
wing are chosen because in this case approximate and exact results can
be compared and the extent of convergence determined. The two-dimensional
case is a legitimate standard in the absence of exact results for the
finite wing since consideration of equation (16) will show that this
equation is at least as convergent when expanded to a certain power of
® Tfor a finite wing as when expanded to the same power of & for a
two-dimensional wing. In figure 4 the components of the section moment-
curve slopes defined in equations (40) are plotted against & for

M= 10/9 and X5 = 0.5. The three dashed-line curves appearing in each
of the four parts of figure 4 represent approximate results obtained by
substituting the components given in equations (32) into the appropriate
expressions of equations (40) and retaining terms involving & .up to
the third, fifth, and seventh powers. The solid-line curves represent
exact results obtalned by using the moment coefficients tabulated in
reference 3. Curves of the components of the section lift-curve slope
are not included because they show essentially the same convergence
tendencies.

As may be noted in figure 4, the value of & at which a particular
approximation departs from the exact theory is essentially the same
regardless of the moment component considered. By extending the &
results of reference 1 (represented by the eurves in fig. 4 labeled

"expansion to @," except that in the present paper an & +term has
been added to the component zmmh) to @& and to &, the value of ®

at which the approximation and the exact theory depart at M = 10/9

has been increased from 0.8 to 1.3 and 2.0, respectively. Further inves-
tigation will show that these values of @ remain essentially the same
regardless of the Mach number involved. The ranges of reduced frequency k

= M2

(equa.l to ‘-29M—5i> in which the various approximations adequately rep-
M

resent the exact theory may therefore be expressed as follows:

For expansion to Eﬁ,

o< kg 0202 - 1)

M2

for expansion to &5,

o< k< 0:65(M2 - 1)
< kg 2
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end for expansion to &,

M2

From these expressions it is readily seen that expanding to ol rather

then & more than doubles the allowable k range. For example, at
M = 10/9 +the limiting value of k is increased from 0.076, which is
too small, to 0.19 which is sufficlently lerge to include most flutter
cases that would likely be encountered at this Mach number.

In order to study the effect of aspect ratio on the forces and
moments, consideration is given to the spanwise variation of section
1ift end moment coefficients. The curves in figures 5 and 6 serve as
illustretions. 1In figure 5 the magnitudes of the slopes obtained by
substituting equations (29) to (32) into equations (40) are plotted
against the spanwise varisble 1 - £ <for the conditions M = 1.3,
A=1%, x,=0.413, and & = 0.544. The quantity ¢ is the previously
used variable y divided by A/2. The phase angles associated with
the magnitudes of the slopes shown in figure 5 are plotted in figure 6;
for example, the phase angle associated with the magnitude

l%éll = hkz\/LBE + Lug is 64 = tan™1 L%/L3' The portions of the curves
in these figures in the range 0< 1 -t 0.4 (1/p<y< A/2) also
apply to a two-dimensional wing under the conditions listed. The effect
of aspect ratio may be noted in the tip region 0.4 < 1 - ¢ < 1.0

(0 y<1/p).

The phase angles 8, and 6, in figure 6 are of particular inter-
est. In keeping with the fact that a component of the force due to h
in phase with the velocity h or a component of the moment due to «
in phase with the angular veloclity & would be destabilizing, values
of 6 between 90° and 270° and values of Oyy between 0° and 180°

would indicate possible dynamic instability in pure bending and pure
torsion, respectively. The coefficient L,, however, is always positive

so that 6y 18 between -90° and 900; this agrees with the well-known

fact that pure bending oscillations are always damped, at least in poten-
tial flow. The phase angle 04y, on the other hand, is less than 180°

in the two-dimensional region and corresponds to undemped or unstable
conditions; whereas in most of the region affected by the wing tip the
phase angle 6y, 1is greater than 1800, which corresponds to damped or
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steble conditions. The main feature of figure 6, therefore, is that
aspect ratio has a stabilizing effect with regard to the motion a.

This result seems to indicate that a flutter analysis which takes into
account the spanwise variation of aerodynamic forces would yield a higher
flutter-speed coefficient than one based on two-dimensional aerodynamic
forces.

Upon substituting equations (37) and (38) into equations (42), the
overall effect of aspect ratio on the total 1ift- and moment-curve slopes
can be calculated for particular values of the parameters M, &, Xo,

and A. Although the effect of aspect ratio A may change considerably
with small changes in one or more of the other parameters, some insight
into the overall effect may be gained from calculations in which, together
with A, one of the parameters &, Xp, or M 1s varied while the other

two remain fixed. Figures T and 8 show the effect on dCL/am and de/hm

of varying A and & while keeping M and x, fixed, and figure 9
shows the effect on dCp/da of varying A and Xxo while keeping M
and & fixed. The effect on the total 1ift- and moment-curve slopes

of varyilng A and M can be extracted from figures 4 and 5 of refer-
ence 1.

In figure 7 the megnitudes and in figure 8 the associated phase
angles of the slopes dCL/hm and de/ﬂm are plotted against ® for

M= 1.3, x,=0.5, and several values of A. In figure 9 the limiting
value as ® —> 0 of the slope de/ha is plotted against x, for

M= 1.3 and three values of A. The curves in figures 7, 8, and 9
labeled A = l/B apply to the least value of A permitted by the fore-
going analysis in that they represent calculations for the combination
of aspect ratio and Mach number that causes the Mach line from one wing
tip to intersect the opposite tip at the trailing edge.

As illustrated in figure T(a), a decrease in aspect ratio for a
given value of @ produces a decrease in the magnitude of the total
1lift-curve slope. This trend is in general true for the range of ®
considered and is not affected by a change in x, or M (see fig. k

of ref. 1). TIn the case of the magnitude of the total moment-curve
slope, however, the trend with aspect ratio is greatly dependent on Xg-.

As may be seen from figures T(b) and 9 (see also fig. 5 of ref. 1), the
magnitude may increase, decrease, or perhaps not vary at all (as is the
case in fig. 9 at xg = 0.67) with a decrease in aspect ratio, depending
on the value of x, under consideration. This seemingly anomalous
behavior of the total moment-curve slope is associated with the change
in center of pressure, for prescribed motions of the wing, with change
in aspect ratio. Also note in figures 7 and 9 that the departure from
the two~-dimensional (A = o) results is rather large for aspect ratios
less than about k.
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From figure 9 for A = » +the following phase angles are obtained:
OaM = 180° for x,< 0.5 and Op = 0° for x, > 0.5. The phase

angle of 90° shown in figure 8(b) for A=w, ®= 0, and xg = 0.5,
although assoclated with a slope of zero magnitude and not really signif-
icant, is therefore a transitional value. Note in figure 8(b) that 6py

is less then 0° for A less than 6; this result also indicates that
aspect ratio i1s stabilizing.

APPLICATION OF FORCES AND MOMENTS TO FLUTTER

Method of Flutter Analysis

For the purpose of applying the foregoing results, a flutter
analysis of the Rayleigh type for uniform cantilever wings is now con-
sidered. Such an aenalysis involves the selection of a set of modal func-
tions to approximste the flutter mode, the formation of the flutter deter-
minant, and the solution of this determinent for the flutter condition.
(Although the use of the force and moment coefficients derived herein
for the undistorted rectangular wing results, in certain cases, in a big
improvement in accuracy over the use of two-dimensional flow coefficients,
perhaps a more accurate but much more cumbersome procedure would be to
use coefficients derived for a distorted wing.)

The flutter mode of the uniform cantilever wing 1s assumed to be
adequately represented by proper combination of the uncoupled first
bending and first torsion mode shapes of the wing. The flutter deter-
minant based on these two modes has the form

Aph Mg
(43)

n
(@]

Ban Au,

where the determinant elements are given by (see fig. 10 for coordinate ()
2 1 1
2 2
%=[_(%]L Zhdg-%nf (Ll+il.2)zhd§ (4ha)
0

1 1
Am=xafo zhzadc-,‘*;nfo (T + 1Ly) 27, At ()
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1 1
Aah:xaj; Zo, & -,%nfo (Mg + M) ZoZp AL (4he)

Ayg, = rfE- (%"-flj: z.2at ':%“fol (M5+ 1M19Za2d§ (4kd)

and where o 1s the flutter frequency. In the event that two-dimensional
air forces and moments are used, the force and moment coefficients appear
as constants in the integrals and can be factored from under the integral

signs, and the determinant elements become

{[ : (‘%ﬂ -F e ﬂz)}fo e

I:xa - :‘? 6 (L5 + ﬂl‘il fol 7%, 4L

“

Aph

Ppg,
S (b5)

Agp = xa-:%n(nl-»mé]folzmzhdg

Agy = {r‘fE i} (%)%l - % o (M5 + mu)i}fol 7.°at ]

(It may be noted thaet egs. (4lt) and (45) are not restricted to any
particular Mach number range if L; and My (i =1, 2, 3, and 4) defined

in accordance with eq. (28) are teken to apply at either subsonic or
supersonic speed.) The uncoupled first bending mode shape Zy, and the

first torsion mode shape Z, needed for the evaluation of the aero-

dynemic integrals of equations (l44) are plotted against 1 - { in fig-
ure 11. The mode-shape integrals of equations (44) end (45) are given

by

1
f 7,24t = 0.25
0
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1
j; ZyZq, 48 = 0.337

1
f 7,24t = 0.50
0

The flutter condition is determined from the nontrivial solution
of equation (43). This solution may be obtained by various means (see
ch. XIIT of ref. 7). In the present paper equastion (43) was solved for
the unknown wh/mm. For a particular wing and Mach number, for which

values of M, Kk, x5, Xq, ra?, and mh/ah, are specified, the reduced
frequency k was varied until the ratio “%/“h, determined from equa-

tion (31) matched that of the wing. In this menner the values of k
and. ah/w at flutter and consequently the flutter-speed coefficient

V/bmm were determined for the wing at the selected value of M.

Flutter Calculations

The foregoing method of analysis was used to obtain flutter char-
acteristics in the Mach number range 10/9 S M < 10/6 for a rectangular

wing with the following properties: A = 4.53, 1/k = 95.3, xo = 0.341,
Xq = 0.350, 142 = 0.39, and apfay = 0.583. Caleulations were made on

the basis of the components of the section force and moment coefficients
given in equations (29) to (32). A numerical method for evalusting the

aerodynamic integrals resulting from the use of these components (for

1
example,h/; (Ll + 112925?d§ in eq. (hha)) is outlined in appendix B.

For comparison, calculations were also made by using force and moment
coefficients for a two-dimensional wing (strip theory). 1In this latter
case the determinant elements are of the form given in equations (45)
wherein the components I3 and Mj are obtained from elther reference 3

or equations (31) and (32) of the present paper. In figure 12 the two
curves resulting from these calculations are plotted in the form of
flutter-speed coefficient Y/bmm against Mach number M. As may be

noted in the figure, the curves are well-separated at M = 10/9 but
tend to converge as the Mach number is increased. At M = 10/9 the
flutter speed obtained by using coefficients for a two-dimensional wing
is about 62 percent of that obtained by using coefficients for a rectan-
gular wing, whereas at M = 10/6 it is about 95 percent.
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CONCLUDING REMARKS

The linearized theory for compressible unsteady flow has been used
to derive expresslons to the seventh power of the frequency of oscilla-
tion for the velocity potential and section and total forces and moments
for a thin rectangular wing harmonically oscillating in pitch and vertical
translation and moving at supersonic speed. These expressions are exten-
sions, although obtalned by a different method, of similar expressions
derived to the third power of the frequency of oscillation in NACA
Report 1028. As a result of this extension the largest value of reduced
frequency for which the theory is sufficiently exact has been increased

from k = 0.4y -~ 1 to k= —Mz—'-'-—l, where M is the Mach number.
M2 M2

For example, at M = 10/9 expansion to the third power of the frequency

is accurate up to about k = 0.08, whereas expansion to the seventh power

is accurate up to k = 0.2, The first of these values for k is too

small but the second is probably large enough to include most rectangular-

wing flutter cases likely to occur at M = 10/9.

Flubtter calculations were made in the Mach number range from 10/9
to 10/6 for a rectangular wing of aspect ratio 4.53% by using the section
force and moment coefficients for a rectanguler wing derived in the pres-
ent paper and the force and moment coefficients for a two-dimensionel
wing given in NACA Report 846. Comparison of the two curves of flutter
speed indicated, as may be expected, that the use of finite-wing coef-
ficients is very influential at Mach numbers near unity but becomes less
s0 as the Mach number is increased. At M = 10/9 for the particular
wing analyzed, the flutter speed obtained by using the section coeffi-
cients for a two-dimensional wing is about 62 percent of that obtained
by using coefficients for a rectangular wing; whereas at M = 10/6 it
is about 95 percent. Since flutter speeds calculated on the basis of
two-dimensional-wing coefficients are generally very conservative in
the low supersonic speed range, it would seem that flutter speeds obtained
by using the section coefficients for rectangular wings of the present
paper mey compare more favorably with experiment.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 1%, 1954,
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APPENDIX A

SOME INTEGRATED VALUES OF F, AND F,

From equation (19) the values of the functions Fn needed in equa-
tion (22) are as follows:

Fy = "By(x -f8y) +x sin~L Vﬁy;x
Tp = ’LGZEZ Vorlx - + 123 sin~L Vay/x

Py - h"+_'w§;_ﬁ3£v——,,(, T+ a;z Y re

Px'w+6wxz+lfgz’2’+mwm+%'h4m

P,'E+ME’L’+MW+%&+MM+§MJW;

7g = 0227+ Topyat + W%ﬁhenﬂ*ﬁnaﬁsn’ﬁ m+%§,m-1y§,7;

FT.MMWJ 2Bty + 5128573 + 10246606 oo +:71.m-1‘/7;a,

Pa_h29x7+h62x5gg+50&:532:3+560x*53y5;%5ﬁ+76&235;5+w516+20k&p7y7m+3a§nmqlvm;

fg_am8+saax7w+mya+ww+%+W+mm¥+mwm+%mdm

The functions F, to F_. were given previously in reference 1 but are

>
repeated here for the sake of completeness.

The values of F, needed in equations (29) and (30) are obtained

by substituting the value of x at the tralling edge (x = 1) into the
preceding values of F,. That is,
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APPENDIX B

NUMERICAL METHOD OF EVALUATING AERODYNAMIC

INTEGRATS IN FLUTTER DETERMINANT

A numerical method of integration for evaluating the aerodynamic
integrals of equations (44) is now outlined. The outline is based on
the two cases discussed after equation (28) and depicted in figure 3.

Case 1 (see fig. 3(a)): The spanwise stations at which values for
the components of the section force and moment coefficients given in
equations (29) to (32) are to be found are shown in figure 10. Since
equations 529) and (30) reduce, respectively, to equations (31) and (32)

for ¢ > 2/Ag, the values of Fn needed to obtain the components of the

section force and moment coefficients at the various stations are as
follows: ’

station| { |y [VE(l - &) |staWEF | By Fo B, B, Fs Fg i{ g 59
0 o |o ) o 0 o 0 o 0 0 0 0 0
1 | ag fame [ VBre =6 | -95661| .37005| .21783| 15332 11833 | .096k0 | .0fa37| .o70k0 | .0620%
2 2xg|1/2p 1f2 =fb  |1.285h0| .%5937| .33958( .23921| .18343 | .akB6| .1246h| .107h2| 0940
3 | ;gf3ke | B a5 |1.48021| .qoko2| .hmo1o| (32598 .2%329 | .20601| .17304| .1ks62| .130ME
4, 5, 6{2ag (21 /p 0 =xf2  |1.57080| 78840 | .52360| .39270| 31416 .26180| .224h0| 19635 17453

Note that these values of F, do not vary with A and B so long as
AB > 2. From the expressions for 1, and L, in equation (29), the
preceding table of values of ﬁn, the curve for Zy, in figure 11, and
the flutter parameters

k = 0.10 A=Lk

B = 0.8307 Ap = = 0.1505

2
2A8

= 0.431 = 0.5 - £ = 0.1990
Xo o) A 5 I 99
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the following sample integration table based on Simpson's parabolic
integrating rule may be devised:

Station, n | ¢ 2,2 Ly + 1L, In = (I + ilp)2,°

0 0 1.0000 0 0

1 1505 | L6273 | 4549 4+ T7.1684i 2854 + L4.49651
2 23010 | 3469 | .9335 + 9.59321 3238 + 3.32811
3 A515 1 .158% 11.3839 + 10.99391 .2192 + 1.74151
I 6020 | .0520 |1.6646 + 11.62361 .0865 + .60421
5 .8010 | .ook1 |1.6646 + 11.62361 .0068 + .o4761
6 1.0000 | O 1.6646 + 11.62361 0

1
f (11 + iLo) 7p2at %@-(Io + 41y + 2T, + 413 + Ty) + -;E(Il,r + 45 + Ig)
0

0.1456 + 1.66851

where I, denotes the value of the integrand at station n. In a

similar manner the remaining aerodynamic integrals of equations (44) can
be eveluated.

Case 2 (see fig. 3(b)): In this case, as illustrated by equation (33),
the components of the force and moment coefficlents_for the wing sections
passing through region T3 contain the functions Fn(A - y) in eddi-

tion to the functioms Fn(y). As a result, there is no arrangement of
spanwise stations which will yield values of Fn that do not vary with

A and PB. For this reason, it seems advisable simply to choose stations
at even increments along the span for the numerical integration.
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Figure 1.- Sketch illustrating chosen coordinste system for semi-infinite
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Figure 2.- Sketch illustrating coordinate system for finite rectanguler
wing with two degrees of freedom o &and h.
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Figure 3.- Sketch based on nondimensional coordinates x and y
illustrating different Mach line locations accounted for in

analysis.
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(b) Imaginary part of moment-curve slope associated with vertical
translation of wing.

Figure 4.- Comparison of two-dimensional moment-curve slopes based on

exact and approximate theory as a function of frequency parameter ®
for M =10/9 and x5 = 0.5.
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(d) Imaginary part of moment-curve slope associated with
pitching of wing.

Figure 4.- Concluded.
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(a) Phase angle between total-lift vector and angular-displacement
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Figure 8.~ Phase angles for pitching rectanguler wing as functions of &
for M=1.3, %o = 0.5, and various values of A.
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of x5 for M=1.3, ®» —>0, and three values of A.
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Figure 11.- Uncoupled first bending mode shape
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mode shape 2%, for a uniform cantilever wing.
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Figure 12.~ Flutter-speed coefficients plotted against Mach number calcu-
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